Python: A Deep Dive into Data Structures for Efficient Programming

🚀 Insert, Update & Delete Rows in Pandas DataFrame (Python Examples)

Insert, Update and Delete Rows in Pandas DataFrame using Python

In today’s data-driven world, Pandas DataFrame manipulation is a must-have skill. Whether you need to insert rows, update values, or delete rows by index/condition — mastering these operations will save you time and make your data analysis workflow seamless.

✔️ How to insert rows into a Pandas DataFrame
✔️ Methods to update DataFrame rows & columns
✔️ Easy ways to delete rows with drop()

In this guide, you’ll learn practical examples using df.loc[], df.drop(), concat(), assign(), and even how to perform Pandas Upsert (insert or update). This article is optimized around popular queries like “insert row pandas”, “pandas update row”, and “delete row pandas by condition”.

✨ Beginner-friendly 🧪 Tested Python code 📈 SEO & GSC optimized
  • insert row pandas
  • pandas update row
  • delete row pandas
  • drop rows by condition
  • pandas upsert

➕ How to Insert Rows in a Pandas DataFrame

Pandas doesn’t have a df.insert_row() API (note: DataFrame.insert() is for columns), but there are reliable ways to add single or multiple rows. Use loc for one-off rows and pd.concat() for batches.

SEO focus: Covers queries like insert row pandas, insert row in dataframe, add rows to dataframe python, and pandas append multiple rows.

📌 Method 1: Use loc[] to add a single row (by index)

Set a new index label (typically the next integer) and assign a list/dict with values in column order.

import pandas as pd

# Original DataFrame
df = pd.DataFrame({
    "Name": ["Amit", "Sneha"],
    "Age": [25, 30]
})

# Insert a new row at index 2 (end)
df.loc[2] = ["Ravi", 28]

print(df)
Name   Age
0   Amit   25
1  Sneha   30
2   Ravi   28

📌 Method 2: Use pd.concat() for multiple rows (recommended)

Build a DataFrame with new records and concatenate once. This is the efficient replacement for deprecated df.append().

# New rows to add
new_rows = pd.DataFrame({
    "Name": ["Karan", "Meera"],
    "Age": [27, 24]
})

# Concatenate and reindex
df = pd.concat([df, new_rows], ignore_index=True)

print(df)

📌 Method 3: Insert at a specific position

To insert between rows, slice around the target position and concatenate.

# Insert a single row at position i (before row i)
i = 1
new_row_df = pd.DataFrame([{"Name": "Isha", "Age": 26}])

df = pd.concat([df.iloc[:i], new_row_df, df.iloc[i:]], ignore_index=True)
print(df)
✅ Pro Tip: For many inserts, collect rows as a list of dicts → build one DataFrame → single pd.concat().
⚠️ Avoid: Repeated df.append() or concat() inside tight loops—costly for large data.
🧭 Note: Ensure keys/columns align; missing columns become NaN. Use df.astype() if dtypes matter.
  • insert row pandas
  • add rows to dataframe python
  • pandas append multiple rows
  • insert row at index pandas

📝 How to Update Values in a Pandas DataFrame

Need to fix or modify data? Pandas makes it easy to update rows and columns by index, by condition, or in bulk. Below are the most reliable patterns you’ll use in real projects.

SEO focus: update pandas dataframe, pandas update row by index, update multiple columns pandas, conditional update pandas.

📌 Method 1: Update a single cell or row by index

Target the cell with loc[row_index, column] or assign a whole row with a list/dict.

import pandas as pd

df = pd.DataFrame({
    "Name": ["Amit", "Sneha"],
    "Age": [25, 30]
})

# Update a single cell (index 1, column 'Age')
df.loc[1, "Age"] = 31

# Replace the entire row at index 0
df.loc[0] = {"Name": "Ravi", "Age": 29}

print(df)

📌 Method 2: Conditional update (boolean mask)

Use a boolean condition to selectively update values.

# Increase Age by 1 where Name == 'Amit'
df.loc[df["Name"] == "Amit", "Age"] += 1

# Set Age = 0 where Age is missing (example condition)
df.loc[df["Age"].isna(), "Age"] = 0

📌 Method 3: Update multiple columns at once

Assign a dict to multiple columns for the matched rows.

# Update multiple columns where Name == 'Sneha'
df.loc[df["Name"] == "Sneha", ["Name", "Age"]] = ["Sneha", 32]

📌 Method 4: Use mask/where for functional style

mask replaces values where condition is True; where keeps values where condition is True.

# Add 5 years for all ages >= 30
df["Age"] = df["Age"].mask(df["Age"] >= 30, df["Age"] + 5)

# Keep ages <= 40, set others to 40
df["Age"] = df["Age"].where(df["Age"] <= 40, 40)

📌 Method 5: Merge updates from another DataFrame (DataFrame.update())

Apply values from another DataFrame to matching indexes/columns (non-NA from the right-hand side overwrite). Ensure indexes/columns align first.

# Base data
df_base = pd.DataFrame({"Name": ["Amit", "Sneha"], "Age": [26, 30]}).set_index("Name")

# Incoming updates (Sneha becomes 33)
df_updates = pd.DataFrame({"Name": ["Sneha"], "Age": [33]}).set_index("Name")

# Apply non-null updates where index & columns match
df_base.update(df_updates)
print(df_base.reset_index())
✅ Tip: Use assign() for readable pipelines: df = df.assign(Age=df["Age"] + 1)
⚠️ Avoid: Chained assignment (e.g. df[df["Age"]>30]["Age"]=0). Use loc to prevent SettingWithCopyWarning.
🧭 Note: After filtering or reset_index(), verify index labels before updating.
  • pandas update row
  • update pandas dataframe
  • conditional update pandas
  • update multiple columns pandas

❌ How to Delete Rows in a Pandas DataFrame

Cleaning datasets often requires removing rows—by index, by condition, or by position. Pandas offers multiple safe and efficient ways to delete rows.

SEO focus: pandas delete row, remove row pandas, drop rows with condition, drop first/last row.

📌 Method 1: Delete by index label

import pandas as pd

df = pd.DataFrame({
    "Name": ["Amit", "Sneha", "Ravi"],
    "Age": [25, 30, 28]
})

# Drop row with index 1
df = df.drop(index=1)
print(df)
Name   Age
0   Amit   25
2   Ravi   28

📌 Method 2: Delete rows based on condition

# Drop rows where Age > 27
df = df[df["Age"] <= 27]

# OR use query syntax
df = df.query("Age <= 27")

This returns a filtered DataFrame; reindex if needed with reset_index(drop=True).

📌 Method 3: Delete first or last row

# Delete first row
df = df.iloc[1:]

# Delete last row
df = df.iloc[:-1]

📌 Method 4: Drop multiple rows by index

# Drop rows at index 0 and 2
df = df.drop(index=[0, 2])

📌 Method 5: Handle NaNs or duplicates

# Drop rows with any missing values
df = df.dropna()

# Drop duplicate rows
df = df.drop_duplicates()
✅ Tip: Use inplace=False (default) to return a new DataFrame and avoid side effects.
⚠️ Watch out: After drops, index labels may skip. Use reset_index(drop=True).
🧭 Note: Boolean filtering is often faster than repeated drop() calls.
  • pandas delete row
  • remove row pandas
  • drop rows with condition
  • drop first row pandas
  • delete last row pandas

❓ Frequently Asked Questions (Pandas DataFrame)

Quick answers to the most searched tasks: insert rows, update by index/condition, and delete rows by index/position/value.

How do I insert a new row in a Pandas DataFrame?
Use loc for a single row, or build a small DataFrame and pd.concat for multiple rows.
# Single row
df.loc[len(df)] = ["Ravi", 28]

# Multiple rows
new_df = pd.DataFrame([{"Name":"Karan","Age":27},{"Name":"Meera","Age":24}])
df = pd.concat([df, new_df], ignore_index=True)
How can I update a row or a single cell by index?
Target with loc[row_index, column] or replace an entire row with a dict.
# Update cell
df.loc[1, "Age"] = 31

# Replace entire row
df.loc[0] = {"Name":"Ravi","Age":29}
How do I update values conditionally (where clause)?
Use boolean masks with loc, or mask/where for a functional style.
# Add 1 year where Name == "Amit"
df.loc[df["Name"]=="Amit", "Age"] += 1

# Cap ages at 40
df["Age"] = df["Age"].where(df["Age"] <= 40, 40)
How do I delete a row by index?
Use drop(index=...) or filter with iloc for first/last rows.
# By index label
df = df.drop(index=1)

# First/last row
df = df.iloc[1:]   # drop first
df = df.iloc[:-1]  # drop last
How do I drop rows based on a condition?
Filter with a boolean mask or use query.
# Keep Age <= 27
df = df[df["Age"] <= 27]

# Equivalent with query
df = df.query("Age <= 27")
What’s the best way to upsert (insert or update) in Pandas?
Align on a key, then either merge and choose values, or use DataFrame.update() for in-place overwrite of non-NA values.
# Example: upsert by 'Name' as key
base = df.set_index("Name")
incoming = pd.DataFrame({"Name":["Sneha","Rohit"], "Age":[33,22]}).set_index("Name")

# Update existing keys; doesn't add new indexes
base.update(incoming)

# Add new keys via concat, then groupby last occurrence
combined = pd.concat([base, incoming], axis=0)
df = combined[~combined.index.duplicated(keep="last")].reset_index()
Why do I see SettingWithCopyWarning, and how do I avoid it?
Avoid chained assignment. Use loc on the original DataFrame, not a view, or call .copy() when intentionally working on a slice.
# Bad (may warn)
df[df["Age"] > 30]["Age"] = 0

# Good
df.loc[df["Age"] > 30, "Age"] = 0
Should I use df.append()? Is it deprecated?
Yes—DataFrame.append() is deprecated. Build a DataFrame of new rows and use pd.concat([...], ignore_index=True).
  • insert row pandas
  • pandas update row
  • delete row pandas
  • drop rows with condition
  • pandas upsert

🧠 Quick Quiz: Insert, Update & Delete Rows in Pandas

Test your knowledge of DataFrame operations. Select the best answer for each. Results and explanations appear at the end.

1) What’s the most efficient way to add multiple rows to a DataFrame?
2) Best way to set Age = 0 where Age > 30?
3) How do you delete rows where Age > 27?
4) Insert a row at position i (between existing rows). What’s correct?
5) For an “upsert” (insert or update) by key column (e.g., Name):
  • insert row pandas
  • pandas update row
  • delete row pandas
  • drop rows with condition
  • pandas upsert

✅ Conclusion: Mastering Insert, Update & Delete in Pandas DataFrames

Great job! 🎉 You’ve covered the essential operations to insert rows, update values, and delete rows in Pandas—core skills for fast, reliable data cleaning and transformation.

  • ✔️ Insert rows with loc (single) and pd.concat() (bulk or at a position via slicing).
  • ✔️ Update values using loc (by index/condition), mask/where, or DataFrame.update() (merge changes).
  • ✔️ Delete rows via drop(index=...), boolean filters (fast), or position with iloc; reindex using reset_index(drop=True).

Level up your analytics career: Join our Data Analytics Course in Dehradun.

  • 📊 Excel • Python • Power BI • SQL (from scratch)
  • 🧠 Live projects & portfolio building
  • 🎯 Career support + Sunday demo classes

📞 Call/WhatsApp: 9411778145

  • insert row pandas
  • pandas update row
  • delete row pandas
  • drop rows by condition
  • pandas upsert
Vista Academy – 316/336, Park Rd, Laxman Chowk, Dehradun – 248001
📞 +91 94117 78145 | 📧 thevistaacademy@gmail.com | 💬 WhatsApp
💬 Chat on WhatsApp: Ask About Our Courses